Skip to contents

A class to hold the results of of a dimensionality reduction.

Usage

# S4 method for dimRedResult
predict(object, xnew)

# S4 method for dimRedResult
inverse(object, ynew)

# S4 method for dimRedResult
as.data.frame(
  x,
  org.data.prefix = "org.",
  meta.prefix = "meta.",
  data.prefix = ""
)

# S4 method for dimRedResult
getPars(object)

# S4 method for dimRedResult
getNDim(object)

# S4 method for dimRedResult
print(x)

# S4 method for dimRedResult
getOrgData(object)

# S4 method for dimRedResult
getDimRedData(object)

# S4 method for dimRedResult
ndims(object)

# S4 method for dimRedResult
getOtherData(object)

Arguments

object

Of class dimRedResult

xnew

new data, of type dimRedData

ynew

embedded data, of type dimRedData

x

Of class dimRedResult

org.data.prefix

Prefix for the columns of the org.data slot.

meta.prefix

Prefix for the columns of x@data@meta.

data.prefix

Prefix for the columns of x@data@data.

Methods (by generic)

  • predict(dimRedResult): apply a trained method to new data, does not work with all methods, will give an error if there is no apply. In some cases the apply function may only be an approximation.

  • inverse(dimRedResult): inverse transformation of embedded data, does not work with all methods, will give an error if there is no inverse. In some cases the apply function may only be an approximation.

  • as.data.frame(dimRedResult): convert to data.frame

  • getPars(dimRedResult): Get the parameters with which the method was called.

  • getNDim(dimRedResult): Get the number of embedding dimensions.

  • print(dimRedResult): Method for printing.

  • getOrgData(dimRedResult): Get the original data and meta.data

  • getDimRedData(dimRedResult): Get the embedded data

  • ndims(dimRedResult): Extract the number of embedding dimensions.

  • getOtherData(dimRedResult): Get other data produced by the method

Slots

data

Output data of class dimRedData.

org.data

original data, a matrix.

apply

a function to apply the method to out-of-sampledata, may not exist.

inverse

a function to calculate the original coordinates from reduced space, may not exist.

has.org.data

logical, if the original data is included in the object.

has.apply

logical, if a forward method is exists.

has.inverse

logical if an inverse method exists.

method

saves the method used.

pars

saves the parameters used.

other.data

other data produced by the method, e.g. a distance matrix.

Examples

## Create object by embedding data
iris.pca <- embed(loadDataSet("Iris"), "PCA")

## Convert the result to a data.frame
head(as(iris.pca, "data.frame"))
#>   meta.Species       PC1        PC2 Sepal.Length Sepal.Width Petal.Length
#> 1       setosa -2.684126 -0.3193972          5.1         3.5          1.4
#> 2       setosa -2.714142  0.1770012          4.9         3.0          1.4
#> 3       setosa -2.888991  0.1449494          4.7         3.2          1.3
#> 4       setosa -2.745343  0.3182990          4.6         3.1          1.5
#> 5       setosa -2.728717 -0.3267545          5.0         3.6          1.4
#> 6       setosa -2.280860 -0.7413304          5.4         3.9          1.7
#>   Petal.Width
#> 1         0.2
#> 2         0.2
#> 3         0.2
#> 4         0.2
#> 5         0.2
#> 6         0.4
head(as.data.frame(iris.pca))
#> Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'head': cannot coerce class ‘structure("dimRedResult", package = "dimRed")’ to a data.frame

## There are no nameclashes to avoid here:
head(as.data.frame(iris.pca,
                   org.data.prefix = "",
                   meta.prefix     = "",
                   data.prefix     = ""))
#> Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'head': cannot coerce class ‘structure("dimRedResult", package = "dimRed")’ to a data.frame

## Print it more or less nicely:
print(iris.pca)
#> Method:
#> PCA 
#> Parameters:
#> List of 2
#>  $ center: logi TRUE
#>  $ scale.: logi FALSE

## Get the embedded data as a dimRedData object:
getDimRedData(iris.pca)
#> An object of class "dimRedData"
#> Slot "data":
#>                 PC1          PC2
#>   [1,] -2.684125626 -0.319397247
#>   [2,] -2.714141687  0.177001225
#>   [3,] -2.888990569  0.144949426
#>   [4,] -2.745342856  0.318298979
#>   [5,] -2.728716537 -0.326754513
#>   [6,] -2.280859633 -0.741330449
#>   [7,] -2.820537751  0.089461385
#>   [8,] -2.626144973 -0.163384960
#>   [9,] -2.886382732  0.578311754
#>  [10,] -2.672755798  0.113774246
#>  [11,] -2.506947091 -0.645068899
#>  [12,] -2.612755231 -0.014729939
#>  [13,] -2.786109266  0.235112000
#>  [14,] -3.223803744  0.511394587
#>  [15,] -2.644750390 -1.178764636
#>  [16,] -2.386039034 -1.338062330
#>  [17,] -2.623527875 -0.810679514
#>  [18,] -2.648296706 -0.311849145
#>  [19,] -2.199820324 -0.872839039
#>  [20,] -2.587986400 -0.513560309
#>  [21,] -2.310256215 -0.391345936
#>  [22,] -2.543705229 -0.432996063
#>  [23,] -3.215939416 -0.133468070
#>  [24,] -2.302733182 -0.098708855
#>  [25,] -2.355754049  0.037281860
#>  [26,] -2.506668907  0.146016880
#>  [27,] -2.468820073 -0.130951489
#>  [28,] -2.562319906 -0.367718857
#>  [29,] -2.639534715 -0.312039980
#>  [30,] -2.631989387  0.196961225
#>  [31,] -2.587398477  0.204318491
#>  [32,] -2.409932497 -0.410924264
#>  [33,] -2.648862334 -0.813363820
#>  [34,] -2.598736749 -1.093145759
#>  [35,] -2.636926878  0.121322348
#>  [36,] -2.866241652 -0.069364472
#>  [37,] -2.625238050 -0.599370021
#>  [38,] -2.800684115 -0.268643738
#>  [39,] -2.980502044  0.487958344
#>  [40,] -2.590006314 -0.229043837
#>  [41,] -2.770102426 -0.263527534
#>  [42,] -2.849368705  0.940960574
#>  [43,] -2.997406547  0.341926057
#>  [44,] -2.405614485 -0.188871429
#>  [45,] -2.209489238 -0.436663142
#>  [46,] -2.714451427  0.250208204
#>  [47,] -2.538148259 -0.503771144
#>  [48,] -2.839462168  0.227945569
#>  [49,] -2.543085750 -0.579410022
#>  [50,] -2.703359782 -0.107706082
#>  [51,]  1.284825689 -0.685160470
#>  [52,]  0.932488532 -0.318333638
#>  [53,]  1.464302322 -0.504262815
#>  [54,]  0.183317720  0.827959012
#>  [55,]  1.088103258 -0.074590675
#>  [56,]  0.641669084  0.418246872
#>  [57,]  1.095060663 -0.283468270
#>  [58,] -0.749122670  1.004890961
#>  [59,]  1.044131826 -0.228361900
#>  [60,] -0.008745404  0.723081905
#>  [61,] -0.507840884  1.265971191
#>  [62,]  0.511698557  0.103981235
#>  [63,]  0.264976508  0.550036464
#>  [64,]  0.984934510  0.124817854
#>  [65,] -0.173925372  0.254854209
#>  [66,]  0.927860781 -0.467179494
#>  [67,]  0.660283762  0.352969666
#>  [68,]  0.236104993  0.333610767
#>  [69,]  0.944733728  0.543145551
#>  [70,]  0.045226976  0.583834377
#>  [71,]  1.116283177  0.084616852
#>  [72,]  0.357888418  0.068925032
#>  [73,]  1.298183875  0.327787308
#>  [74,]  0.921728922  0.182737794
#>  [75,]  0.714853326 -0.149055944
#>  [76,]  0.900174373 -0.328504474
#>  [77,]  1.332024437 -0.244440876
#>  [78,]  1.557802155 -0.267495447
#>  [79,]  0.813290650  0.163350301
#>  [80,] -0.305583778  0.368262190
#>  [81,] -0.068126492  0.705172132
#>  [82,] -0.189622472  0.680286764
#>  [83,]  0.136428712  0.314032438
#>  [84,]  1.380026436  0.420954287
#>  [85,]  0.588006443  0.484287420
#>  [86,]  0.806858313 -0.194182315
#>  [87,]  1.220690882 -0.407619594
#>  [88,]  0.815095236  0.372037060
#>  [89,]  0.245957680  0.268524397
#>  [90,]  0.166413217  0.681926725
#>  [91,]  0.464800288  0.670711545
#>  [92,]  0.890815198  0.034464444
#>  [93,]  0.230548024  0.404385848
#>  [94,] -0.704531759  1.012248228
#>  [95,]  0.356981495  0.504910093
#>  [96,]  0.331934480  0.212654684
#>  [97,]  0.376215651  0.293218929
#>  [98,]  0.642576008 -0.017738190
#>  [99,] -0.906469865  0.756093367
#> [100,]  0.299000842  0.348897806
#> [101,]  2.531192728  0.009849109
#> [102,]  1.415235877  0.574916348
#> [103,]  2.616676016 -0.343903151
#> [104,]  1.971531053  0.179727904
#> [105,]  2.350005920  0.040260947
#> [106,]  3.397038736 -0.550836673
#> [107,]  0.521232244  1.192758727
#> [108,]  2.932587069 -0.355500003
#> [109,]  2.321228817  0.243831502
#> [110,]  2.916750967 -0.782791949
#> [111,]  1.661774154 -0.242228408
#> [112,]  1.803401953  0.215637617
#> [113,]  2.165591796 -0.216275585
#> [114,]  1.346163579  0.776818347
#> [115,]  1.585928224  0.539640714
#> [116,]  1.904456375 -0.119250692
#> [117,]  1.949689059 -0.041943260
#> [118,]  3.487055364 -1.175739330
#> [119,]  3.795645422 -0.257322973
#> [120,]  1.300791713  0.761149636
#> [121,]  2.427817913 -0.378196013
#> [122,]  1.199001105  0.606091528
#> [123,]  3.499920039 -0.460674099
#> [124,]  1.388766132  0.204399327
#> [125,]  2.275430504 -0.334990606
#> [126,]  2.614090474 -0.560901355
#> [127,]  1.258508161  0.179704795
#> [128,]  1.291132059  0.116668651
#> [129,]  2.123608723  0.209729477
#> [130,]  2.388003016 -0.464639805
#> [131,]  2.841672778 -0.375269167
#> [132,]  3.230673661 -1.374165087
#> [133,]  2.159437642  0.217277579
#> [134,]  1.444161242  0.143413410
#> [135,]  1.781294810  0.499901681
#> [136,]  3.076499932 -0.688085678
#> [137,]  2.144243314 -0.140064201
#> [138,]  1.905098149 -0.049300526
#> [139,]  1.169326339  0.164990262
#> [140,]  2.107611143 -0.372287872
#> [141,]  2.314154705 -0.183651279
#> [142,]  1.922267801 -0.409203467
#> [143,]  1.415235877  0.574916348
#> [144,]  2.563013375 -0.277862603
#> [145,]  2.418746183 -0.304798198
#> [146,]  1.944109795 -0.187532303
#> [147,]  1.527166615  0.375316983
#> [148,]  1.764345717 -0.078858855
#> [149,]  1.900941614 -0.116627959
#> [150,]  1.390188862  0.282660938
#> 
#> Slot "meta":
#>        Species
#> 1       setosa
#> 2       setosa
#> 3       setosa
#> 4       setosa
#> 5       setosa
#> 6       setosa
#> 7       setosa
#> 8       setosa
#> 9       setosa
#> 10      setosa
#> 11      setosa
#> 12      setosa
#> 13      setosa
#> 14      setosa
#> 15      setosa
#> 16      setosa
#> 17      setosa
#> 18      setosa
#> 19      setosa
#> 20      setosa
#> 21      setosa
#> 22      setosa
#> 23      setosa
#> 24      setosa
#> 25      setosa
#> 26      setosa
#> 27      setosa
#> 28      setosa
#> 29      setosa
#> 30      setosa
#> 31      setosa
#> 32      setosa
#> 33      setosa
#> 34      setosa
#> 35      setosa
#> 36      setosa
#> 37      setosa
#> 38      setosa
#> 39      setosa
#> 40      setosa
#> 41      setosa
#> 42      setosa
#> 43      setosa
#> 44      setosa
#> 45      setosa
#> 46      setosa
#> 47      setosa
#> 48      setosa
#> 49      setosa
#> 50      setosa
#> 51  versicolor
#> 52  versicolor
#> 53  versicolor
#> 54  versicolor
#> 55  versicolor
#> 56  versicolor
#> 57  versicolor
#> 58  versicolor
#> 59  versicolor
#> 60  versicolor
#> 61  versicolor
#> 62  versicolor
#> 63  versicolor
#> 64  versicolor
#> 65  versicolor
#> 66  versicolor
#> 67  versicolor
#> 68  versicolor
#> 69  versicolor
#> 70  versicolor
#> 71  versicolor
#> 72  versicolor
#> 73  versicolor
#> 74  versicolor
#> 75  versicolor
#> 76  versicolor
#> 77  versicolor
#> 78  versicolor
#> 79  versicolor
#> 80  versicolor
#> 81  versicolor
#> 82  versicolor
#> 83  versicolor
#> 84  versicolor
#> 85  versicolor
#> 86  versicolor
#> 87  versicolor
#> 88  versicolor
#> 89  versicolor
#> 90  versicolor
#> 91  versicolor
#> 92  versicolor
#> 93  versicolor
#> 94  versicolor
#> 95  versicolor
#> 96  versicolor
#> 97  versicolor
#> 98  versicolor
#> 99  versicolor
#> 100 versicolor
#> 101  virginica
#> 102  virginica
#> 103  virginica
#> 104  virginica
#> 105  virginica
#> 106  virginica
#> 107  virginica
#> 108  virginica
#> 109  virginica
#> 110  virginica
#> 111  virginica
#> 112  virginica
#> 113  virginica
#> 114  virginica
#> 115  virginica
#> 116  virginica
#> 117  virginica
#> 118  virginica
#> 119  virginica
#> 120  virginica
#> 121  virginica
#> 122  virginica
#> 123  virginica
#> 124  virginica
#> 125  virginica
#> 126  virginica
#> 127  virginica
#> 128  virginica
#> 129  virginica
#> 130  virginica
#> 131  virginica
#> 132  virginica
#> 133  virginica
#> 134  virginica
#> 135  virginica
#> 136  virginica
#> 137  virginica
#> 138  virginica
#> 139  virginica
#> 140  virginica
#> 141  virginica
#> 142  virginica
#> 143  virginica
#> 144  virginica
#> 145  virginica
#> 146  virginica
#> 147  virginica
#> 148  virginica
#> 149  virginica
#> 150  virginica
#> 

## Get the original data including meta information:
getOrgData(iris.pca)
#> An object of class "dimRedData"
#> Slot "data":
#>        Sepal.Length Sepal.Width Petal.Length Petal.Width
#>   [1,]          5.1         3.5          1.4         0.2
#>   [2,]          4.9         3.0          1.4         0.2
#>   [3,]          4.7         3.2          1.3         0.2
#>   [4,]          4.6         3.1          1.5         0.2
#>   [5,]          5.0         3.6          1.4         0.2
#>   [6,]          5.4         3.9          1.7         0.4
#>   [7,]          4.6         3.4          1.4         0.3
#>   [8,]          5.0         3.4          1.5         0.2
#>   [9,]          4.4         2.9          1.4         0.2
#>  [10,]          4.9         3.1          1.5         0.1
#>  [11,]          5.4         3.7          1.5         0.2
#>  [12,]          4.8         3.4          1.6         0.2
#>  [13,]          4.8         3.0          1.4         0.1
#>  [14,]          4.3         3.0          1.1         0.1
#>  [15,]          5.8         4.0          1.2         0.2
#>  [16,]          5.7         4.4          1.5         0.4
#>  [17,]          5.4         3.9          1.3         0.4
#>  [18,]          5.1         3.5          1.4         0.3
#>  [19,]          5.7         3.8          1.7         0.3
#>  [20,]          5.1         3.8          1.5         0.3
#>  [21,]          5.4         3.4          1.7         0.2
#>  [22,]          5.1         3.7          1.5         0.4
#>  [23,]          4.6         3.6          1.0         0.2
#>  [24,]          5.1         3.3          1.7         0.5
#>  [25,]          4.8         3.4          1.9         0.2
#>  [26,]          5.0         3.0          1.6         0.2
#>  [27,]          5.0         3.4          1.6         0.4
#>  [28,]          5.2         3.5          1.5         0.2
#>  [29,]          5.2         3.4          1.4         0.2
#>  [30,]          4.7         3.2          1.6         0.2
#>  [31,]          4.8         3.1          1.6         0.2
#>  [32,]          5.4         3.4          1.5         0.4
#>  [33,]          5.2         4.1          1.5         0.1
#>  [34,]          5.5         4.2          1.4         0.2
#>  [35,]          4.9         3.1          1.5         0.2
#>  [36,]          5.0         3.2          1.2         0.2
#>  [37,]          5.5         3.5          1.3         0.2
#>  [38,]          4.9         3.6          1.4         0.1
#>  [39,]          4.4         3.0          1.3         0.2
#>  [40,]          5.1         3.4          1.5         0.2
#>  [41,]          5.0         3.5          1.3         0.3
#>  [42,]          4.5         2.3          1.3         0.3
#>  [43,]          4.4         3.2          1.3         0.2
#>  [44,]          5.0         3.5          1.6         0.6
#>  [45,]          5.1         3.8          1.9         0.4
#>  [46,]          4.8         3.0          1.4         0.3
#>  [47,]          5.1         3.8          1.6         0.2
#>  [48,]          4.6         3.2          1.4         0.2
#>  [49,]          5.3         3.7          1.5         0.2
#>  [50,]          5.0         3.3          1.4         0.2
#>  [51,]          7.0         3.2          4.7         1.4
#>  [52,]          6.4         3.2          4.5         1.5
#>  [53,]          6.9         3.1          4.9         1.5
#>  [54,]          5.5         2.3          4.0         1.3
#>  [55,]          6.5         2.8          4.6         1.5
#>  [56,]          5.7         2.8          4.5         1.3
#>  [57,]          6.3         3.3          4.7         1.6
#>  [58,]          4.9         2.4          3.3         1.0
#>  [59,]          6.6         2.9          4.6         1.3
#>  [60,]          5.2         2.7          3.9         1.4
#>  [61,]          5.0         2.0          3.5         1.0
#>  [62,]          5.9         3.0          4.2         1.5
#>  [63,]          6.0         2.2          4.0         1.0
#>  [64,]          6.1         2.9          4.7         1.4
#>  [65,]          5.6         2.9          3.6         1.3
#>  [66,]          6.7         3.1          4.4         1.4
#>  [67,]          5.6         3.0          4.5         1.5
#>  [68,]          5.8         2.7          4.1         1.0
#>  [69,]          6.2         2.2          4.5         1.5
#>  [70,]          5.6         2.5          3.9         1.1
#>  [71,]          5.9         3.2          4.8         1.8
#>  [72,]          6.1         2.8          4.0         1.3
#>  [73,]          6.3         2.5          4.9         1.5
#>  [74,]          6.1         2.8          4.7         1.2
#>  [75,]          6.4         2.9          4.3         1.3
#>  [76,]          6.6         3.0          4.4         1.4
#>  [77,]          6.8         2.8          4.8         1.4
#>  [78,]          6.7         3.0          5.0         1.7
#>  [79,]          6.0         2.9          4.5         1.5
#>  [80,]          5.7         2.6          3.5         1.0
#>  [81,]          5.5         2.4          3.8         1.1
#>  [82,]          5.5         2.4          3.7         1.0
#>  [83,]          5.8         2.7          3.9         1.2
#>  [84,]          6.0         2.7          5.1         1.6
#>  [85,]          5.4         3.0          4.5         1.5
#>  [86,]          6.0         3.4          4.5         1.6
#>  [87,]          6.7         3.1          4.7         1.5
#>  [88,]          6.3         2.3          4.4         1.3
#>  [89,]          5.6         3.0          4.1         1.3
#>  [90,]          5.5         2.5          4.0         1.3
#>  [91,]          5.5         2.6          4.4         1.2
#>  [92,]          6.1         3.0          4.6         1.4
#>  [93,]          5.8         2.6          4.0         1.2
#>  [94,]          5.0         2.3          3.3         1.0
#>  [95,]          5.6         2.7          4.2         1.3
#>  [96,]          5.7         3.0          4.2         1.2
#>  [97,]          5.7         2.9          4.2         1.3
#>  [98,]          6.2         2.9          4.3         1.3
#>  [99,]          5.1         2.5          3.0         1.1
#> [100,]          5.7         2.8          4.1         1.3
#> [101,]          6.3         3.3          6.0         2.5
#> [102,]          5.8         2.7          5.1         1.9
#> [103,]          7.1         3.0          5.9         2.1
#> [104,]          6.3         2.9          5.6         1.8
#> [105,]          6.5         3.0          5.8         2.2
#> [106,]          7.6         3.0          6.6         2.1
#> [107,]          4.9         2.5          4.5         1.7
#> [108,]          7.3         2.9          6.3         1.8
#> [109,]          6.7         2.5          5.8         1.8
#> [110,]          7.2         3.6          6.1         2.5
#> [111,]          6.5         3.2          5.1         2.0
#> [112,]          6.4         2.7          5.3         1.9
#> [113,]          6.8         3.0          5.5         2.1
#> [114,]          5.7         2.5          5.0         2.0
#> [115,]          5.8         2.8          5.1         2.4
#> [116,]          6.4         3.2          5.3         2.3
#> [117,]          6.5         3.0          5.5         1.8
#> [118,]          7.7         3.8          6.7         2.2
#> [119,]          7.7         2.6          6.9         2.3
#> [120,]          6.0         2.2          5.0         1.5
#> [121,]          6.9         3.2          5.7         2.3
#> [122,]          5.6         2.8          4.9         2.0
#> [123,]          7.7         2.8          6.7         2.0
#> [124,]          6.3         2.7          4.9         1.8
#> [125,]          6.7         3.3          5.7         2.1
#> [126,]          7.2         3.2          6.0         1.8
#> [127,]          6.2         2.8          4.8         1.8
#> [128,]          6.1         3.0          4.9         1.8
#> [129,]          6.4         2.8          5.6         2.1
#> [130,]          7.2         3.0          5.8         1.6
#> [131,]          7.4         2.8          6.1         1.9
#> [132,]          7.9         3.8          6.4         2.0
#> [133,]          6.4         2.8          5.6         2.2
#> [134,]          6.3         2.8          5.1         1.5
#> [135,]          6.1         2.6          5.6         1.4
#> [136,]          7.7         3.0          6.1         2.3
#> [137,]          6.3         3.4          5.6         2.4
#> [138,]          6.4         3.1          5.5         1.8
#> [139,]          6.0         3.0          4.8         1.8
#> [140,]          6.9         3.1          5.4         2.1
#> [141,]          6.7         3.1          5.6         2.4
#> [142,]          6.9         3.1          5.1         2.3
#> [143,]          5.8         2.7          5.1         1.9
#> [144,]          6.8         3.2          5.9         2.3
#> [145,]          6.7         3.3          5.7         2.5
#> [146,]          6.7         3.0          5.2         2.3
#> [147,]          6.3         2.5          5.0         1.9
#> [148,]          6.5         3.0          5.2         2.0
#> [149,]          6.2         3.4          5.4         2.3
#> [150,]          5.9         3.0          5.1         1.8
#> 
#> Slot "meta":
#>        Species
#> 1       setosa
#> 2       setosa
#> 3       setosa
#> 4       setosa
#> 5       setosa
#> 6       setosa
#> 7       setosa
#> 8       setosa
#> 9       setosa
#> 10      setosa
#> 11      setosa
#> 12      setosa
#> 13      setosa
#> 14      setosa
#> 15      setosa
#> 16      setosa
#> 17      setosa
#> 18      setosa
#> 19      setosa
#> 20      setosa
#> 21      setosa
#> 22      setosa
#> 23      setosa
#> 24      setosa
#> 25      setosa
#> 26      setosa
#> 27      setosa
#> 28      setosa
#> 29      setosa
#> 30      setosa
#> 31      setosa
#> 32      setosa
#> 33      setosa
#> 34      setosa
#> 35      setosa
#> 36      setosa
#> 37      setosa
#> 38      setosa
#> 39      setosa
#> 40      setosa
#> 41      setosa
#> 42      setosa
#> 43      setosa
#> 44      setosa
#> 45      setosa
#> 46      setosa
#> 47      setosa
#> 48      setosa
#> 49      setosa
#> 50      setosa
#> 51  versicolor
#> 52  versicolor
#> 53  versicolor
#> 54  versicolor
#> 55  versicolor
#> 56  versicolor
#> 57  versicolor
#> 58  versicolor
#> 59  versicolor
#> 60  versicolor
#> 61  versicolor
#> 62  versicolor
#> 63  versicolor
#> 64  versicolor
#> 65  versicolor
#> 66  versicolor
#> 67  versicolor
#> 68  versicolor
#> 69  versicolor
#> 70  versicolor
#> 71  versicolor
#> 72  versicolor
#> 73  versicolor
#> 74  versicolor
#> 75  versicolor
#> 76  versicolor
#> 77  versicolor
#> 78  versicolor
#> 79  versicolor
#> 80  versicolor
#> 81  versicolor
#> 82  versicolor
#> 83  versicolor
#> 84  versicolor
#> 85  versicolor
#> 86  versicolor
#> 87  versicolor
#> 88  versicolor
#> 89  versicolor
#> 90  versicolor
#> 91  versicolor
#> 92  versicolor
#> 93  versicolor
#> 94  versicolor
#> 95  versicolor
#> 96  versicolor
#> 97  versicolor
#> 98  versicolor
#> 99  versicolor
#> 100 versicolor
#> 101  virginica
#> 102  virginica
#> 103  virginica
#> 104  virginica
#> 105  virginica
#> 106  virginica
#> 107  virginica
#> 108  virginica
#> 109  virginica
#> 110  virginica
#> 111  virginica
#> 112  virginica
#> 113  virginica
#> 114  virginica
#> 115  virginica
#> 116  virginica
#> 117  virginica
#> 118  virginica
#> 119  virginica
#> 120  virginica
#> 121  virginica
#> 122  virginica
#> 123  virginica
#> 124  virginica
#> 125  virginica
#> 126  virginica
#> 127  virginica
#> 128  virginica
#> 129  virginica
#> 130  virginica
#> 131  virginica
#> 132  virginica
#> 133  virginica
#> 134  virginica
#> 135  virginica
#> 136  virginica
#> 137  virginica
#> 138  virginica
#> 139  virginica
#> 140  virginica
#> 141  virginica
#> 142  virginica
#> 143  virginica
#> 144  virginica
#> 145  virginica
#> 146  virginica
#> 147  virginica
#> 148  virginica
#> 149  virginica
#> 150  virginica
#> 

## Get the number of variables:
ndims(iris.pca)
#> [1] 2