Skip to contents

A class to hold data for dimensionality reduction and methods.

Usage

# S4 method for dimRedData
as.data.frame(x, meta.prefix = "meta.", data.prefix = "")

# S4 method for dimRedData
getData(object)

# S4 method for dimRedData
getMeta(object)

# S4 method for dimRedData
nrow(x)

# S4 method for dimRedData,ANY,ANY,ANY
[(x, i)

# S4 method for dimRedData
ndims(object)

Arguments

x

Of class dimRedData

meta.prefix

Prefix for the columns of the meta data names.

data.prefix

Prefix for the columns of the variable names.

object

Of class dimRedData.

i

a valid index for subsetting rows.

Details

The class hast two slots, data and meta. The data slot contains a numeric matrix with variables in columns and observations in rows. The meta slot may contain a data.frame with additional information. Both slots need to have the same number of rows or the meta slot needs to contain an empty data.frame.

See examples for easy conversion from and to data.frame.

For plotting functions see plot.dimRedData.

Methods (by generic)

  • as.data.frame(dimRedData): convert to data.frame

  • getData(dimRedData): Get the data slot.

  • getMeta(dimRedData): Get the meta slot.

  • nrow(dimRedData): Get the number of observations.

  • x[i: Subset rows.

  • ndims(dimRedData): Extract the number of Variables from the data.

Slots

data

of class matrix, holds the data, observations in rows, variables in columns

meta

of class data.frame, holds meta data such as classes, internal manifold coordinates, or simply additional data of the data set. Must have the same number of rows as the data slot or be an empty data frame.

See also

Other dimRedData: as.dimRedData()

Other dimRedData: as.dimRedData()

Examples

## Load an example data set:
s3d <- loadDataSet("3D S Curve")

## Create using a constructor:

### without meta information:
dimRedData(iris[, 1:4])
#> An object of class "dimRedData"
#> Slot "data":
#>        Sepal.Length Sepal.Width Petal.Length Petal.Width
#>   [1,]          5.1         3.5          1.4         0.2
#>   [2,]          4.9         3.0          1.4         0.2
#>   [3,]          4.7         3.2          1.3         0.2
#>   [4,]          4.6         3.1          1.5         0.2
#>   [5,]          5.0         3.6          1.4         0.2
#>   [6,]          5.4         3.9          1.7         0.4
#>   [7,]          4.6         3.4          1.4         0.3
#>   [8,]          5.0         3.4          1.5         0.2
#>   [9,]          4.4         2.9          1.4         0.2
#>  [10,]          4.9         3.1          1.5         0.1
#>  [11,]          5.4         3.7          1.5         0.2
#>  [12,]          4.8         3.4          1.6         0.2
#>  [13,]          4.8         3.0          1.4         0.1
#>  [14,]          4.3         3.0          1.1         0.1
#>  [15,]          5.8         4.0          1.2         0.2
#>  [16,]          5.7         4.4          1.5         0.4
#>  [17,]          5.4         3.9          1.3         0.4
#>  [18,]          5.1         3.5          1.4         0.3
#>  [19,]          5.7         3.8          1.7         0.3
#>  [20,]          5.1         3.8          1.5         0.3
#>  [21,]          5.4         3.4          1.7         0.2
#>  [22,]          5.1         3.7          1.5         0.4
#>  [23,]          4.6         3.6          1.0         0.2
#>  [24,]          5.1         3.3          1.7         0.5
#>  [25,]          4.8         3.4          1.9         0.2
#>  [26,]          5.0         3.0          1.6         0.2
#>  [27,]          5.0         3.4          1.6         0.4
#>  [28,]          5.2         3.5          1.5         0.2
#>  [29,]          5.2         3.4          1.4         0.2
#>  [30,]          4.7         3.2          1.6         0.2
#>  [31,]          4.8         3.1          1.6         0.2
#>  [32,]          5.4         3.4          1.5         0.4
#>  [33,]          5.2         4.1          1.5         0.1
#>  [34,]          5.5         4.2          1.4         0.2
#>  [35,]          4.9         3.1          1.5         0.2
#>  [36,]          5.0         3.2          1.2         0.2
#>  [37,]          5.5         3.5          1.3         0.2
#>  [38,]          4.9         3.6          1.4         0.1
#>  [39,]          4.4         3.0          1.3         0.2
#>  [40,]          5.1         3.4          1.5         0.2
#>  [41,]          5.0         3.5          1.3         0.3
#>  [42,]          4.5         2.3          1.3         0.3
#>  [43,]          4.4         3.2          1.3         0.2
#>  [44,]          5.0         3.5          1.6         0.6
#>  [45,]          5.1         3.8          1.9         0.4
#>  [46,]          4.8         3.0          1.4         0.3
#>  [47,]          5.1         3.8          1.6         0.2
#>  [48,]          4.6         3.2          1.4         0.2
#>  [49,]          5.3         3.7          1.5         0.2
#>  [50,]          5.0         3.3          1.4         0.2
#>  [51,]          7.0         3.2          4.7         1.4
#>  [52,]          6.4         3.2          4.5         1.5
#>  [53,]          6.9         3.1          4.9         1.5
#>  [54,]          5.5         2.3          4.0         1.3
#>  [55,]          6.5         2.8          4.6         1.5
#>  [56,]          5.7         2.8          4.5         1.3
#>  [57,]          6.3         3.3          4.7         1.6
#>  [58,]          4.9         2.4          3.3         1.0
#>  [59,]          6.6         2.9          4.6         1.3
#>  [60,]          5.2         2.7          3.9         1.4
#>  [61,]          5.0         2.0          3.5         1.0
#>  [62,]          5.9         3.0          4.2         1.5
#>  [63,]          6.0         2.2          4.0         1.0
#>  [64,]          6.1         2.9          4.7         1.4
#>  [65,]          5.6         2.9          3.6         1.3
#>  [66,]          6.7         3.1          4.4         1.4
#>  [67,]          5.6         3.0          4.5         1.5
#>  [68,]          5.8         2.7          4.1         1.0
#>  [69,]          6.2         2.2          4.5         1.5
#>  [70,]          5.6         2.5          3.9         1.1
#>  [71,]          5.9         3.2          4.8         1.8
#>  [72,]          6.1         2.8          4.0         1.3
#>  [73,]          6.3         2.5          4.9         1.5
#>  [74,]          6.1         2.8          4.7         1.2
#>  [75,]          6.4         2.9          4.3         1.3
#>  [76,]          6.6         3.0          4.4         1.4
#>  [77,]          6.8         2.8          4.8         1.4
#>  [78,]          6.7         3.0          5.0         1.7
#>  [79,]          6.0         2.9          4.5         1.5
#>  [80,]          5.7         2.6          3.5         1.0
#>  [81,]          5.5         2.4          3.8         1.1
#>  [82,]          5.5         2.4          3.7         1.0
#>  [83,]          5.8         2.7          3.9         1.2
#>  [84,]          6.0         2.7          5.1         1.6
#>  [85,]          5.4         3.0          4.5         1.5
#>  [86,]          6.0         3.4          4.5         1.6
#>  [87,]          6.7         3.1          4.7         1.5
#>  [88,]          6.3         2.3          4.4         1.3
#>  [89,]          5.6         3.0          4.1         1.3
#>  [90,]          5.5         2.5          4.0         1.3
#>  [91,]          5.5         2.6          4.4         1.2
#>  [92,]          6.1         3.0          4.6         1.4
#>  [93,]          5.8         2.6          4.0         1.2
#>  [94,]          5.0         2.3          3.3         1.0
#>  [95,]          5.6         2.7          4.2         1.3
#>  [96,]          5.7         3.0          4.2         1.2
#>  [97,]          5.7         2.9          4.2         1.3
#>  [98,]          6.2         2.9          4.3         1.3
#>  [99,]          5.1         2.5          3.0         1.1
#> [100,]          5.7         2.8          4.1         1.3
#> [101,]          6.3         3.3          6.0         2.5
#> [102,]          5.8         2.7          5.1         1.9
#> [103,]          7.1         3.0          5.9         2.1
#> [104,]          6.3         2.9          5.6         1.8
#> [105,]          6.5         3.0          5.8         2.2
#> [106,]          7.6         3.0          6.6         2.1
#> [107,]          4.9         2.5          4.5         1.7
#> [108,]          7.3         2.9          6.3         1.8
#> [109,]          6.7         2.5          5.8         1.8
#> [110,]          7.2         3.6          6.1         2.5
#> [111,]          6.5         3.2          5.1         2.0
#> [112,]          6.4         2.7          5.3         1.9
#> [113,]          6.8         3.0          5.5         2.1
#> [114,]          5.7         2.5          5.0         2.0
#> [115,]          5.8         2.8          5.1         2.4
#> [116,]          6.4         3.2          5.3         2.3
#> [117,]          6.5         3.0          5.5         1.8
#> [118,]          7.7         3.8          6.7         2.2
#> [119,]          7.7         2.6          6.9         2.3
#> [120,]          6.0         2.2          5.0         1.5
#> [121,]          6.9         3.2          5.7         2.3
#> [122,]          5.6         2.8          4.9         2.0
#> [123,]          7.7         2.8          6.7         2.0
#> [124,]          6.3         2.7          4.9         1.8
#> [125,]          6.7         3.3          5.7         2.1
#> [126,]          7.2         3.2          6.0         1.8
#> [127,]          6.2         2.8          4.8         1.8
#> [128,]          6.1         3.0          4.9         1.8
#> [129,]          6.4         2.8          5.6         2.1
#> [130,]          7.2         3.0          5.8         1.6
#> [131,]          7.4         2.8          6.1         1.9
#> [132,]          7.9         3.8          6.4         2.0
#> [133,]          6.4         2.8          5.6         2.2
#> [134,]          6.3         2.8          5.1         1.5
#> [135,]          6.1         2.6          5.6         1.4
#> [136,]          7.7         3.0          6.1         2.3
#> [137,]          6.3         3.4          5.6         2.4
#> [138,]          6.4         3.1          5.5         1.8
#> [139,]          6.0         3.0          4.8         1.8
#> [140,]          6.9         3.1          5.4         2.1
#> [141,]          6.7         3.1          5.6         2.4
#> [142,]          6.9         3.1          5.1         2.3
#> [143,]          5.8         2.7          5.1         1.9
#> [144,]          6.8         3.2          5.9         2.3
#> [145,]          6.7         3.3          5.7         2.5
#> [146,]          6.7         3.0          5.2         2.3
#> [147,]          6.3         2.5          5.0         1.9
#> [148,]          6.5         3.0          5.2         2.0
#> [149,]          6.2         3.4          5.4         2.3
#> [150,]          5.9         3.0          5.1         1.8
#> 
#> Slot "meta":
#> data frame with 0 columns and 0 rows
#> 

### with meta information:
dimRedData(iris[, 1:4], iris[, 5])
#> An object of class "dimRedData"
#> Slot "data":
#>        Sepal.Length Sepal.Width Petal.Length Petal.Width
#>   [1,]          5.1         3.5          1.4         0.2
#>   [2,]          4.9         3.0          1.4         0.2
#>   [3,]          4.7         3.2          1.3         0.2
#>   [4,]          4.6         3.1          1.5         0.2
#>   [5,]          5.0         3.6          1.4         0.2
#>   [6,]          5.4         3.9          1.7         0.4
#>   [7,]          4.6         3.4          1.4         0.3
#>   [8,]          5.0         3.4          1.5         0.2
#>   [9,]          4.4         2.9          1.4         0.2
#>  [10,]          4.9         3.1          1.5         0.1
#>  [11,]          5.4         3.7          1.5         0.2
#>  [12,]          4.8         3.4          1.6         0.2
#>  [13,]          4.8         3.0          1.4         0.1
#>  [14,]          4.3         3.0          1.1         0.1
#>  [15,]          5.8         4.0          1.2         0.2
#>  [16,]          5.7         4.4          1.5         0.4
#>  [17,]          5.4         3.9          1.3         0.4
#>  [18,]          5.1         3.5          1.4         0.3
#>  [19,]          5.7         3.8          1.7         0.3
#>  [20,]          5.1         3.8          1.5         0.3
#>  [21,]          5.4         3.4          1.7         0.2
#>  [22,]          5.1         3.7          1.5         0.4
#>  [23,]          4.6         3.6          1.0         0.2
#>  [24,]          5.1         3.3          1.7         0.5
#>  [25,]          4.8         3.4          1.9         0.2
#>  [26,]          5.0         3.0          1.6         0.2
#>  [27,]          5.0         3.4          1.6         0.4
#>  [28,]          5.2         3.5          1.5         0.2
#>  [29,]          5.2         3.4          1.4         0.2
#>  [30,]          4.7         3.2          1.6         0.2
#>  [31,]          4.8         3.1          1.6         0.2
#>  [32,]          5.4         3.4          1.5         0.4
#>  [33,]          5.2         4.1          1.5         0.1
#>  [34,]          5.5         4.2          1.4         0.2
#>  [35,]          4.9         3.1          1.5         0.2
#>  [36,]          5.0         3.2          1.2         0.2
#>  [37,]          5.5         3.5          1.3         0.2
#>  [38,]          4.9         3.6          1.4         0.1
#>  [39,]          4.4         3.0          1.3         0.2
#>  [40,]          5.1         3.4          1.5         0.2
#>  [41,]          5.0         3.5          1.3         0.3
#>  [42,]          4.5         2.3          1.3         0.3
#>  [43,]          4.4         3.2          1.3         0.2
#>  [44,]          5.0         3.5          1.6         0.6
#>  [45,]          5.1         3.8          1.9         0.4
#>  [46,]          4.8         3.0          1.4         0.3
#>  [47,]          5.1         3.8          1.6         0.2
#>  [48,]          4.6         3.2          1.4         0.2
#>  [49,]          5.3         3.7          1.5         0.2
#>  [50,]          5.0         3.3          1.4         0.2
#>  [51,]          7.0         3.2          4.7         1.4
#>  [52,]          6.4         3.2          4.5         1.5
#>  [53,]          6.9         3.1          4.9         1.5
#>  [54,]          5.5         2.3          4.0         1.3
#>  [55,]          6.5         2.8          4.6         1.5
#>  [56,]          5.7         2.8          4.5         1.3
#>  [57,]          6.3         3.3          4.7         1.6
#>  [58,]          4.9         2.4          3.3         1.0
#>  [59,]          6.6         2.9          4.6         1.3
#>  [60,]          5.2         2.7          3.9         1.4
#>  [61,]          5.0         2.0          3.5         1.0
#>  [62,]          5.9         3.0          4.2         1.5
#>  [63,]          6.0         2.2          4.0         1.0
#>  [64,]          6.1         2.9          4.7         1.4
#>  [65,]          5.6         2.9          3.6         1.3
#>  [66,]          6.7         3.1          4.4         1.4
#>  [67,]          5.6         3.0          4.5         1.5
#>  [68,]          5.8         2.7          4.1         1.0
#>  [69,]          6.2         2.2          4.5         1.5
#>  [70,]          5.6         2.5          3.9         1.1
#>  [71,]          5.9         3.2          4.8         1.8
#>  [72,]          6.1         2.8          4.0         1.3
#>  [73,]          6.3         2.5          4.9         1.5
#>  [74,]          6.1         2.8          4.7         1.2
#>  [75,]          6.4         2.9          4.3         1.3
#>  [76,]          6.6         3.0          4.4         1.4
#>  [77,]          6.8         2.8          4.8         1.4
#>  [78,]          6.7         3.0          5.0         1.7
#>  [79,]          6.0         2.9          4.5         1.5
#>  [80,]          5.7         2.6          3.5         1.0
#>  [81,]          5.5         2.4          3.8         1.1
#>  [82,]          5.5         2.4          3.7         1.0
#>  [83,]          5.8         2.7          3.9         1.2
#>  [84,]          6.0         2.7          5.1         1.6
#>  [85,]          5.4         3.0          4.5         1.5
#>  [86,]          6.0         3.4          4.5         1.6
#>  [87,]          6.7         3.1          4.7         1.5
#>  [88,]          6.3         2.3          4.4         1.3
#>  [89,]          5.6         3.0          4.1         1.3
#>  [90,]          5.5         2.5          4.0         1.3
#>  [91,]          5.5         2.6          4.4         1.2
#>  [92,]          6.1         3.0          4.6         1.4
#>  [93,]          5.8         2.6          4.0         1.2
#>  [94,]          5.0         2.3          3.3         1.0
#>  [95,]          5.6         2.7          4.2         1.3
#>  [96,]          5.7         3.0          4.2         1.2
#>  [97,]          5.7         2.9          4.2         1.3
#>  [98,]          6.2         2.9          4.3         1.3
#>  [99,]          5.1         2.5          3.0         1.1
#> [100,]          5.7         2.8          4.1         1.3
#> [101,]          6.3         3.3          6.0         2.5
#> [102,]          5.8         2.7          5.1         1.9
#> [103,]          7.1         3.0          5.9         2.1
#> [104,]          6.3         2.9          5.6         1.8
#> [105,]          6.5         3.0          5.8         2.2
#> [106,]          7.6         3.0          6.6         2.1
#> [107,]          4.9         2.5          4.5         1.7
#> [108,]          7.3         2.9          6.3         1.8
#> [109,]          6.7         2.5          5.8         1.8
#> [110,]          7.2         3.6          6.1         2.5
#> [111,]          6.5         3.2          5.1         2.0
#> [112,]          6.4         2.7          5.3         1.9
#> [113,]          6.8         3.0          5.5         2.1
#> [114,]          5.7         2.5          5.0         2.0
#> [115,]          5.8         2.8          5.1         2.4
#> [116,]          6.4         3.2          5.3         2.3
#> [117,]          6.5         3.0          5.5         1.8
#> [118,]          7.7         3.8          6.7         2.2
#> [119,]          7.7         2.6          6.9         2.3
#> [120,]          6.0         2.2          5.0         1.5
#> [121,]          6.9         3.2          5.7         2.3
#> [122,]          5.6         2.8          4.9         2.0
#> [123,]          7.7         2.8          6.7         2.0
#> [124,]          6.3         2.7          4.9         1.8
#> [125,]          6.7         3.3          5.7         2.1
#> [126,]          7.2         3.2          6.0         1.8
#> [127,]          6.2         2.8          4.8         1.8
#> [128,]          6.1         3.0          4.9         1.8
#> [129,]          6.4         2.8          5.6         2.1
#> [130,]          7.2         3.0          5.8         1.6
#> [131,]          7.4         2.8          6.1         1.9
#> [132,]          7.9         3.8          6.4         2.0
#> [133,]          6.4         2.8          5.6         2.2
#> [134,]          6.3         2.8          5.1         1.5
#> [135,]          6.1         2.6          5.6         1.4
#> [136,]          7.7         3.0          6.1         2.3
#> [137,]          6.3         3.4          5.6         2.4
#> [138,]          6.4         3.1          5.5         1.8
#> [139,]          6.0         3.0          4.8         1.8
#> [140,]          6.9         3.1          5.4         2.1
#> [141,]          6.7         3.1          5.6         2.4
#> [142,]          6.9         3.1          5.1         2.3
#> [143,]          5.8         2.7          5.1         1.9
#> [144,]          6.8         3.2          5.9         2.3
#> [145,]          6.7         3.3          5.7         2.5
#> [146,]          6.7         3.0          5.2         2.3
#> [147,]          6.3         2.5          5.0         1.9
#> [148,]          6.5         3.0          5.2         2.0
#> [149,]          6.2         3.4          5.4         2.3
#> [150,]          5.9         3.0          5.1         1.8
#> 
#> Slot "meta":
#>           meta
#> 1       setosa
#> 2       setosa
#> 3       setosa
#> 4       setosa
#> 5       setosa
#> 6       setosa
#> 7       setosa
#> 8       setosa
#> 9       setosa
#> 10      setosa
#> 11      setosa
#> 12      setosa
#> 13      setosa
#> 14      setosa
#> 15      setosa
#> 16      setosa
#> 17      setosa
#> 18      setosa
#> 19      setosa
#> 20      setosa
#> 21      setosa
#> 22      setosa
#> 23      setosa
#> 24      setosa
#> 25      setosa
#> 26      setosa
#> 27      setosa
#> 28      setosa
#> 29      setosa
#> 30      setosa
#> 31      setosa
#> 32      setosa
#> 33      setosa
#> 34      setosa
#> 35      setosa
#> 36      setosa
#> 37      setosa
#> 38      setosa
#> 39      setosa
#> 40      setosa
#> 41      setosa
#> 42      setosa
#> 43      setosa
#> 44      setosa
#> 45      setosa
#> 46      setosa
#> 47      setosa
#> 48      setosa
#> 49      setosa
#> 50      setosa
#> 51  versicolor
#> 52  versicolor
#> 53  versicolor
#> 54  versicolor
#> 55  versicolor
#> 56  versicolor
#> 57  versicolor
#> 58  versicolor
#> 59  versicolor
#> 60  versicolor
#> 61  versicolor
#> 62  versicolor
#> 63  versicolor
#> 64  versicolor
#> 65  versicolor
#> 66  versicolor
#> 67  versicolor
#> 68  versicolor
#> 69  versicolor
#> 70  versicolor
#> 71  versicolor
#> 72  versicolor
#> 73  versicolor
#> 74  versicolor
#> 75  versicolor
#> 76  versicolor
#> 77  versicolor
#> 78  versicolor
#> 79  versicolor
#> 80  versicolor
#> 81  versicolor
#> 82  versicolor
#> 83  versicolor
#> 84  versicolor
#> 85  versicolor
#> 86  versicolor
#> 87  versicolor
#> 88  versicolor
#> 89  versicolor
#> 90  versicolor
#> 91  versicolor
#> 92  versicolor
#> 93  versicolor
#> 94  versicolor
#> 95  versicolor
#> 96  versicolor
#> 97  versicolor
#> 98  versicolor
#> 99  versicolor
#> 100 versicolor
#> 101  virginica
#> 102  virginica
#> 103  virginica
#> 104  virginica
#> 105  virginica
#> 106  virginica
#> 107  virginica
#> 108  virginica
#> 109  virginica
#> 110  virginica
#> 111  virginica
#> 112  virginica
#> 113  virginica
#> 114  virginica
#> 115  virginica
#> 116  virginica
#> 117  virginica
#> 118  virginica
#> 119  virginica
#> 120  virginica
#> 121  virginica
#> 122  virginica
#> 123  virginica
#> 124  virginica
#> 125  virginica
#> 126  virginica
#> 127  virginica
#> 128  virginica
#> 129  virginica
#> 130  virginica
#> 131  virginica
#> 132  virginica
#> 133  virginica
#> 134  virginica
#> 135  virginica
#> 136  virginica
#> 137  virginica
#> 138  virginica
#> 139  virginica
#> 140  virginica
#> 141  virginica
#> 142  virginica
#> 143  virginica
#> 144  virginica
#> 145  virginica
#> 146  virginica
#> 147  virginica
#> 148  virginica
#> 149  virginica
#> 150  virginica
#> 

### using slot names:
dimRedData(data = iris[, 1:4], meta = iris[, 5])
#> An object of class "dimRedData"
#> Slot "data":
#>        Sepal.Length Sepal.Width Petal.Length Petal.Width
#>   [1,]          5.1         3.5          1.4         0.2
#>   [2,]          4.9         3.0          1.4         0.2
#>   [3,]          4.7         3.2          1.3         0.2
#>   [4,]          4.6         3.1          1.5         0.2
#>   [5,]          5.0         3.6          1.4         0.2
#>   [6,]          5.4         3.9          1.7         0.4
#>   [7,]          4.6         3.4          1.4         0.3
#>   [8,]          5.0         3.4          1.5         0.2
#>   [9,]          4.4         2.9          1.4         0.2
#>  [10,]          4.9         3.1          1.5         0.1
#>  [11,]          5.4         3.7          1.5         0.2
#>  [12,]          4.8         3.4          1.6         0.2
#>  [13,]          4.8         3.0          1.4         0.1
#>  [14,]          4.3         3.0          1.1         0.1
#>  [15,]          5.8         4.0          1.2         0.2
#>  [16,]          5.7         4.4          1.5         0.4
#>  [17,]          5.4         3.9          1.3         0.4
#>  [18,]          5.1         3.5          1.4         0.3
#>  [19,]          5.7         3.8          1.7         0.3
#>  [20,]          5.1         3.8          1.5         0.3
#>  [21,]          5.4         3.4          1.7         0.2
#>  [22,]          5.1         3.7          1.5         0.4
#>  [23,]          4.6         3.6          1.0         0.2
#>  [24,]          5.1         3.3          1.7         0.5
#>  [25,]          4.8         3.4          1.9         0.2
#>  [26,]          5.0         3.0          1.6         0.2
#>  [27,]          5.0         3.4          1.6         0.4
#>  [28,]          5.2         3.5          1.5         0.2
#>  [29,]          5.2         3.4          1.4         0.2
#>  [30,]          4.7         3.2          1.6         0.2
#>  [31,]          4.8         3.1          1.6         0.2
#>  [32,]          5.4         3.4          1.5         0.4
#>  [33,]          5.2         4.1          1.5         0.1
#>  [34,]          5.5         4.2          1.4         0.2
#>  [35,]          4.9         3.1          1.5         0.2
#>  [36,]          5.0         3.2          1.2         0.2
#>  [37,]          5.5         3.5          1.3         0.2
#>  [38,]          4.9         3.6          1.4         0.1
#>  [39,]          4.4         3.0          1.3         0.2
#>  [40,]          5.1         3.4          1.5         0.2
#>  [41,]          5.0         3.5          1.3         0.3
#>  [42,]          4.5         2.3          1.3         0.3
#>  [43,]          4.4         3.2          1.3         0.2
#>  [44,]          5.0         3.5          1.6         0.6
#>  [45,]          5.1         3.8          1.9         0.4
#>  [46,]          4.8         3.0          1.4         0.3
#>  [47,]          5.1         3.8          1.6         0.2
#>  [48,]          4.6         3.2          1.4         0.2
#>  [49,]          5.3         3.7          1.5         0.2
#>  [50,]          5.0         3.3          1.4         0.2
#>  [51,]          7.0         3.2          4.7         1.4
#>  [52,]          6.4         3.2          4.5         1.5
#>  [53,]          6.9         3.1          4.9         1.5
#>  [54,]          5.5         2.3          4.0         1.3
#>  [55,]          6.5         2.8          4.6         1.5
#>  [56,]          5.7         2.8          4.5         1.3
#>  [57,]          6.3         3.3          4.7         1.6
#>  [58,]          4.9         2.4          3.3         1.0
#>  [59,]          6.6         2.9          4.6         1.3
#>  [60,]          5.2         2.7          3.9         1.4
#>  [61,]          5.0         2.0          3.5         1.0
#>  [62,]          5.9         3.0          4.2         1.5
#>  [63,]          6.0         2.2          4.0         1.0
#>  [64,]          6.1         2.9          4.7         1.4
#>  [65,]          5.6         2.9          3.6         1.3
#>  [66,]          6.7         3.1          4.4         1.4
#>  [67,]          5.6         3.0          4.5         1.5
#>  [68,]          5.8         2.7          4.1         1.0
#>  [69,]          6.2         2.2          4.5         1.5
#>  [70,]          5.6         2.5          3.9         1.1
#>  [71,]          5.9         3.2          4.8         1.8
#>  [72,]          6.1         2.8          4.0         1.3
#>  [73,]          6.3         2.5          4.9         1.5
#>  [74,]          6.1         2.8          4.7         1.2
#>  [75,]          6.4         2.9          4.3         1.3
#>  [76,]          6.6         3.0          4.4         1.4
#>  [77,]          6.8         2.8          4.8         1.4
#>  [78,]          6.7         3.0          5.0         1.7
#>  [79,]          6.0         2.9          4.5         1.5
#>  [80,]          5.7         2.6          3.5         1.0
#>  [81,]          5.5         2.4          3.8         1.1
#>  [82,]          5.5         2.4          3.7         1.0
#>  [83,]          5.8         2.7          3.9         1.2
#>  [84,]          6.0         2.7          5.1         1.6
#>  [85,]          5.4         3.0          4.5         1.5
#>  [86,]          6.0         3.4          4.5         1.6
#>  [87,]          6.7         3.1          4.7         1.5
#>  [88,]          6.3         2.3          4.4         1.3
#>  [89,]          5.6         3.0          4.1         1.3
#>  [90,]          5.5         2.5          4.0         1.3
#>  [91,]          5.5         2.6          4.4         1.2
#>  [92,]          6.1         3.0          4.6         1.4
#>  [93,]          5.8         2.6          4.0         1.2
#>  [94,]          5.0         2.3          3.3         1.0
#>  [95,]          5.6         2.7          4.2         1.3
#>  [96,]          5.7         3.0          4.2         1.2
#>  [97,]          5.7         2.9          4.2         1.3
#>  [98,]          6.2         2.9          4.3         1.3
#>  [99,]          5.1         2.5          3.0         1.1
#> [100,]          5.7         2.8          4.1         1.3
#> [101,]          6.3         3.3          6.0         2.5
#> [102,]          5.8         2.7          5.1         1.9
#> [103,]          7.1         3.0          5.9         2.1
#> [104,]          6.3         2.9          5.6         1.8
#> [105,]          6.5         3.0          5.8         2.2
#> [106,]          7.6         3.0          6.6         2.1
#> [107,]          4.9         2.5          4.5         1.7
#> [108,]          7.3         2.9          6.3         1.8
#> [109,]          6.7         2.5          5.8         1.8
#> [110,]          7.2         3.6          6.1         2.5
#> [111,]          6.5         3.2          5.1         2.0
#> [112,]          6.4         2.7          5.3         1.9
#> [113,]          6.8         3.0          5.5         2.1
#> [114,]          5.7         2.5          5.0         2.0
#> [115,]          5.8         2.8          5.1         2.4
#> [116,]          6.4         3.2          5.3         2.3
#> [117,]          6.5         3.0          5.5         1.8
#> [118,]          7.7         3.8          6.7         2.2
#> [119,]          7.7         2.6          6.9         2.3
#> [120,]          6.0         2.2          5.0         1.5
#> [121,]          6.9         3.2          5.7         2.3
#> [122,]          5.6         2.8          4.9         2.0
#> [123,]          7.7         2.8          6.7         2.0
#> [124,]          6.3         2.7          4.9         1.8
#> [125,]          6.7         3.3          5.7         2.1
#> [126,]          7.2         3.2          6.0         1.8
#> [127,]          6.2         2.8          4.8         1.8
#> [128,]          6.1         3.0          4.9         1.8
#> [129,]          6.4         2.8          5.6         2.1
#> [130,]          7.2         3.0          5.8         1.6
#> [131,]          7.4         2.8          6.1         1.9
#> [132,]          7.9         3.8          6.4         2.0
#> [133,]          6.4         2.8          5.6         2.2
#> [134,]          6.3         2.8          5.1         1.5
#> [135,]          6.1         2.6          5.6         1.4
#> [136,]          7.7         3.0          6.1         2.3
#> [137,]          6.3         3.4          5.6         2.4
#> [138,]          6.4         3.1          5.5         1.8
#> [139,]          6.0         3.0          4.8         1.8
#> [140,]          6.9         3.1          5.4         2.1
#> [141,]          6.7         3.1          5.6         2.4
#> [142,]          6.9         3.1          5.1         2.3
#> [143,]          5.8         2.7          5.1         1.9
#> [144,]          6.8         3.2          5.9         2.3
#> [145,]          6.7         3.3          5.7         2.5
#> [146,]          6.7         3.0          5.2         2.3
#> [147,]          6.3         2.5          5.0         1.9
#> [148,]          6.5         3.0          5.2         2.0
#> [149,]          6.2         3.4          5.4         2.3
#> [150,]          5.9         3.0          5.1         1.8
#> 
#> Slot "meta":
#>           meta
#> 1       setosa
#> 2       setosa
#> 3       setosa
#> 4       setosa
#> 5       setosa
#> 6       setosa
#> 7       setosa
#> 8       setosa
#> 9       setosa
#> 10      setosa
#> 11      setosa
#> 12      setosa
#> 13      setosa
#> 14      setosa
#> 15      setosa
#> 16      setosa
#> 17      setosa
#> 18      setosa
#> 19      setosa
#> 20      setosa
#> 21      setosa
#> 22      setosa
#> 23      setosa
#> 24      setosa
#> 25      setosa
#> 26      setosa
#> 27      setosa
#> 28      setosa
#> 29      setosa
#> 30      setosa
#> 31      setosa
#> 32      setosa
#> 33      setosa
#> 34      setosa
#> 35      setosa
#> 36      setosa
#> 37      setosa
#> 38      setosa
#> 39      setosa
#> 40      setosa
#> 41      setosa
#> 42      setosa
#> 43      setosa
#> 44      setosa
#> 45      setosa
#> 46      setosa
#> 47      setosa
#> 48      setosa
#> 49      setosa
#> 50      setosa
#> 51  versicolor
#> 52  versicolor
#> 53  versicolor
#> 54  versicolor
#> 55  versicolor
#> 56  versicolor
#> 57  versicolor
#> 58  versicolor
#> 59  versicolor
#> 60  versicolor
#> 61  versicolor
#> 62  versicolor
#> 63  versicolor
#> 64  versicolor
#> 65  versicolor
#> 66  versicolor
#> 67  versicolor
#> 68  versicolor
#> 69  versicolor
#> 70  versicolor
#> 71  versicolor
#> 72  versicolor
#> 73  versicolor
#> 74  versicolor
#> 75  versicolor
#> 76  versicolor
#> 77  versicolor
#> 78  versicolor
#> 79  versicolor
#> 80  versicolor
#> 81  versicolor
#> 82  versicolor
#> 83  versicolor
#> 84  versicolor
#> 85  versicolor
#> 86  versicolor
#> 87  versicolor
#> 88  versicolor
#> 89  versicolor
#> 90  versicolor
#> 91  versicolor
#> 92  versicolor
#> 93  versicolor
#> 94  versicolor
#> 95  versicolor
#> 96  versicolor
#> 97  versicolor
#> 98  versicolor
#> 99  versicolor
#> 100 versicolor
#> 101  virginica
#> 102  virginica
#> 103  virginica
#> 104  virginica
#> 105  virginica
#> 106  virginica
#> 107  virginica
#> 108  virginica
#> 109  virginica
#> 110  virginica
#> 111  virginica
#> 112  virginica
#> 113  virginica
#> 114  virginica
#> 115  virginica
#> 116  virginica
#> 117  virginica
#> 118  virginica
#> 119  virginica
#> 120  virginica
#> 121  virginica
#> 122  virginica
#> 123  virginica
#> 124  virginica
#> 125  virginica
#> 126  virginica
#> 127  virginica
#> 128  virginica
#> 129  virginica
#> 130  virginica
#> 131  virginica
#> 132  virginica
#> 133  virginica
#> 134  virginica
#> 135  virginica
#> 136  virginica
#> 137  virginica
#> 138  virginica
#> 139  virginica
#> 140  virginica
#> 141  virginica
#> 142  virginica
#> 143  virginica
#> 144  virginica
#> 145  virginica
#> 146  virginica
#> 147  virginica
#> 148  virginica
#> 149  virginica
#> 150  virginica
#> 

## Convert to a dimRedData objects:
Iris <- as(iris[, 1:4], "dimRedData")

## Convert to data.frame:
head(as(s3d, "data.frame"))
#>      meta.x    meta.y          x         y          z
#> 1 -3.021469 1.4638981 -0.1072140 1.5029277  1.9779528
#> 2  2.812930 1.6593310  0.3549164 1.6539398 -1.8550226
#> 3 -1.143790 0.6508086 -0.9393959 0.6389731  0.5506825
#> 4 -1.803581 1.5900944 -1.0663543 1.5694958  1.2841629
#> 5  1.051515 1.9486942  0.8672332 1.9302189 -0.4196088
#> 6  2.379555 0.9830578  0.6445032 0.9844853 -1.7174701
head(as.data.frame(s3d))
#> Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'head': cannot coerce class ‘structure("dimRedData", package = "dimRed")’ to a data.frame
head(as.data.frame(as(iris[, 1:4], "dimRedData")))
#> Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'head': cannot coerce class ‘structure("dimRedData", package = "dimRed")’ to a data.frame

## Extract slots:
head(getData(s3d))
#>               x         y          z
#> [1,] -0.1072140 1.5029277  1.9779528
#> [2,]  0.3549164 1.6539398 -1.8550226
#> [3,] -0.9393959 0.6389731  0.5506825
#> [4,] -1.0663543 1.5694958  1.2841629
#> [5,]  0.8672332 1.9302189 -0.4196088
#> [6,]  0.6445032 0.9844853 -1.7174701
head(getMeta(s3d))
#>           x         y
#> 1 -3.021469 1.4638981
#> 2  2.812930 1.6593310
#> 3 -1.143790 0.6508086
#> 4 -1.803581 1.5900944
#> 5  1.051515 1.9486942
#> 6  2.379555 0.9830578

## Get the number of observations:
nrow(s3d)
#> [1] 2000

## Subset:
s3d[1:5, ]
#> An object of class "dimRedData"
#> Slot "data":
#>               x         y          z
#> [1,] -0.1072140 1.5029277  1.9779528
#> [2,]  0.3549164 1.6539398 -1.8550226
#> [3,] -0.9393959 0.6389731  0.5506825
#> [4,] -1.0663543 1.5694958  1.2841629
#> [5,]  0.8672332 1.9302189 -0.4196088
#> 
#> Slot "meta":
#>           x         y
#> 1 -3.021469 1.4638981
#> 2  2.812930 1.6593310
#> 3 -1.143790 0.6508086
#> 4 -1.803581 1.5900944
#> 5  1.051515 1.9486942
#> 

## Shuffle data:
s3 <- s3d[nrow(s3d)]

## Get the number of variables:
ndims(s3d)
#> [1] 3