A compilation of standard data sets that are often being used to showcase dimensionality reduction techniques.
Arguments
- name
A character vector that specifies the name of the data set.
- n
In generated data sets the number of points to be generated, else ignored.
- sigma
In generated data sets the standard deviation of the noise added, else ignored.
Value
loadDataSet
an object of class
dimRedData
. dataSetList()
return a
character string with the implemented data sets
Details
The argument name
should be one of
dataSetList()
. Partial matching is possible, see
match.arg
. Generated data sets contain the internal
coordinates of the manifold in the meta
slot. Call
dataSetList()
to see what data sets are available.
Examples
## a list of available data sets:
dataSetList()
#> [1] "Swiss Roll" "Broken Swiss Roll" "Helix"
#> [4] "Twin Peaks" "Sphere" "Ball"
#> [7] "FishBowl" "3D S Curve" "variable Noise Helix"
#> [10] "Iris" "Cube"
## Load a data set:
swissRoll <- loadDataSet("Swiss Roll")
# \donttest{
if(requireNamespace("scatterplot3d", quietly = TRUE))
plot(swissRoll, type = "3vars")
# }
## Load Iris data set, partial matching:
loadDataSet("I")
#> An object of class "dimRedData"
#> Slot "data":
#> Sepal.Length Sepal.Width Petal.Length Petal.Width
#> [1,] 5.1 3.5 1.4 0.2
#> [2,] 4.9 3.0 1.4 0.2
#> [3,] 4.7 3.2 1.3 0.2
#> [4,] 4.6 3.1 1.5 0.2
#> [5,] 5.0 3.6 1.4 0.2
#> [6,] 5.4 3.9 1.7 0.4
#> [7,] 4.6 3.4 1.4 0.3
#> [8,] 5.0 3.4 1.5 0.2
#> [9,] 4.4 2.9 1.4 0.2
#> [10,] 4.9 3.1 1.5 0.1
#> [11,] 5.4 3.7 1.5 0.2
#> [12,] 4.8 3.4 1.6 0.2
#> [13,] 4.8 3.0 1.4 0.1
#> [14,] 4.3 3.0 1.1 0.1
#> [15,] 5.8 4.0 1.2 0.2
#> [16,] 5.7 4.4 1.5 0.4
#> [17,] 5.4 3.9 1.3 0.4
#> [18,] 5.1 3.5 1.4 0.3
#> [19,] 5.7 3.8 1.7 0.3
#> [20,] 5.1 3.8 1.5 0.3
#> [21,] 5.4 3.4 1.7 0.2
#> [22,] 5.1 3.7 1.5 0.4
#> [23,] 4.6 3.6 1.0 0.2
#> [24,] 5.1 3.3 1.7 0.5
#> [25,] 4.8 3.4 1.9 0.2
#> [26,] 5.0 3.0 1.6 0.2
#> [27,] 5.0 3.4 1.6 0.4
#> [28,] 5.2 3.5 1.5 0.2
#> [29,] 5.2 3.4 1.4 0.2
#> [30,] 4.7 3.2 1.6 0.2
#> [31,] 4.8 3.1 1.6 0.2
#> [32,] 5.4 3.4 1.5 0.4
#> [33,] 5.2 4.1 1.5 0.1
#> [34,] 5.5 4.2 1.4 0.2
#> [35,] 4.9 3.1 1.5 0.2
#> [36,] 5.0 3.2 1.2 0.2
#> [37,] 5.5 3.5 1.3 0.2
#> [38,] 4.9 3.6 1.4 0.1
#> [39,] 4.4 3.0 1.3 0.2
#> [40,] 5.1 3.4 1.5 0.2
#> [41,] 5.0 3.5 1.3 0.3
#> [42,] 4.5 2.3 1.3 0.3
#> [43,] 4.4 3.2 1.3 0.2
#> [44,] 5.0 3.5 1.6 0.6
#> [45,] 5.1 3.8 1.9 0.4
#> [46,] 4.8 3.0 1.4 0.3
#> [47,] 5.1 3.8 1.6 0.2
#> [48,] 4.6 3.2 1.4 0.2
#> [49,] 5.3 3.7 1.5 0.2
#> [50,] 5.0 3.3 1.4 0.2
#> [51,] 7.0 3.2 4.7 1.4
#> [52,] 6.4 3.2 4.5 1.5
#> [53,] 6.9 3.1 4.9 1.5
#> [54,] 5.5 2.3 4.0 1.3
#> [55,] 6.5 2.8 4.6 1.5
#> [56,] 5.7 2.8 4.5 1.3
#> [57,] 6.3 3.3 4.7 1.6
#> [58,] 4.9 2.4 3.3 1.0
#> [59,] 6.6 2.9 4.6 1.3
#> [60,] 5.2 2.7 3.9 1.4
#> [61,] 5.0 2.0 3.5 1.0
#> [62,] 5.9 3.0 4.2 1.5
#> [63,] 6.0 2.2 4.0 1.0
#> [64,] 6.1 2.9 4.7 1.4
#> [65,] 5.6 2.9 3.6 1.3
#> [66,] 6.7 3.1 4.4 1.4
#> [67,] 5.6 3.0 4.5 1.5
#> [68,] 5.8 2.7 4.1 1.0
#> [69,] 6.2 2.2 4.5 1.5
#> [70,] 5.6 2.5 3.9 1.1
#> [71,] 5.9 3.2 4.8 1.8
#> [72,] 6.1 2.8 4.0 1.3
#> [73,] 6.3 2.5 4.9 1.5
#> [74,] 6.1 2.8 4.7 1.2
#> [75,] 6.4 2.9 4.3 1.3
#> [76,] 6.6 3.0 4.4 1.4
#> [77,] 6.8 2.8 4.8 1.4
#> [78,] 6.7 3.0 5.0 1.7
#> [79,] 6.0 2.9 4.5 1.5
#> [80,] 5.7 2.6 3.5 1.0
#> [81,] 5.5 2.4 3.8 1.1
#> [82,] 5.5 2.4 3.7 1.0
#> [83,] 5.8 2.7 3.9 1.2
#> [84,] 6.0 2.7 5.1 1.6
#> [85,] 5.4 3.0 4.5 1.5
#> [86,] 6.0 3.4 4.5 1.6
#> [87,] 6.7 3.1 4.7 1.5
#> [88,] 6.3 2.3 4.4 1.3
#> [89,] 5.6 3.0 4.1 1.3
#> [90,] 5.5 2.5 4.0 1.3
#> [91,] 5.5 2.6 4.4 1.2
#> [92,] 6.1 3.0 4.6 1.4
#> [93,] 5.8 2.6 4.0 1.2
#> [94,] 5.0 2.3 3.3 1.0
#> [95,] 5.6 2.7 4.2 1.3
#> [96,] 5.7 3.0 4.2 1.2
#> [97,] 5.7 2.9 4.2 1.3
#> [98,] 6.2 2.9 4.3 1.3
#> [99,] 5.1 2.5 3.0 1.1
#> [100,] 5.7 2.8 4.1 1.3
#> [101,] 6.3 3.3 6.0 2.5
#> [102,] 5.8 2.7 5.1 1.9
#> [103,] 7.1 3.0 5.9 2.1
#> [104,] 6.3 2.9 5.6 1.8
#> [105,] 6.5 3.0 5.8 2.2
#> [106,] 7.6 3.0 6.6 2.1
#> [107,] 4.9 2.5 4.5 1.7
#> [108,] 7.3 2.9 6.3 1.8
#> [109,] 6.7 2.5 5.8 1.8
#> [110,] 7.2 3.6 6.1 2.5
#> [111,] 6.5 3.2 5.1 2.0
#> [112,] 6.4 2.7 5.3 1.9
#> [113,] 6.8 3.0 5.5 2.1
#> [114,] 5.7 2.5 5.0 2.0
#> [115,] 5.8 2.8 5.1 2.4
#> [116,] 6.4 3.2 5.3 2.3
#> [117,] 6.5 3.0 5.5 1.8
#> [118,] 7.7 3.8 6.7 2.2
#> [119,] 7.7 2.6 6.9 2.3
#> [120,] 6.0 2.2 5.0 1.5
#> [121,] 6.9 3.2 5.7 2.3
#> [122,] 5.6 2.8 4.9 2.0
#> [123,] 7.7 2.8 6.7 2.0
#> [124,] 6.3 2.7 4.9 1.8
#> [125,] 6.7 3.3 5.7 2.1
#> [126,] 7.2 3.2 6.0 1.8
#> [127,] 6.2 2.8 4.8 1.8
#> [128,] 6.1 3.0 4.9 1.8
#> [129,] 6.4 2.8 5.6 2.1
#> [130,] 7.2 3.0 5.8 1.6
#> [131,] 7.4 2.8 6.1 1.9
#> [132,] 7.9 3.8 6.4 2.0
#> [133,] 6.4 2.8 5.6 2.2
#> [134,] 6.3 2.8 5.1 1.5
#> [135,] 6.1 2.6 5.6 1.4
#> [136,] 7.7 3.0 6.1 2.3
#> [137,] 6.3 3.4 5.6 2.4
#> [138,] 6.4 3.1 5.5 1.8
#> [139,] 6.0 3.0 4.8 1.8
#> [140,] 6.9 3.1 5.4 2.1
#> [141,] 6.7 3.1 5.6 2.4
#> [142,] 6.9 3.1 5.1 2.3
#> [143,] 5.8 2.7 5.1 1.9
#> [144,] 6.8 3.2 5.9 2.3
#> [145,] 6.7 3.3 5.7 2.5
#> [146,] 6.7 3.0 5.2 2.3
#> [147,] 6.3 2.5 5.0 1.9
#> [148,] 6.5 3.0 5.2 2.0
#> [149,] 6.2 3.4 5.4 2.3
#> [150,] 5.9 3.0 5.1 1.8
#>
#> Slot "meta":
#> Species
#> 1 setosa
#> 2 setosa
#> 3 setosa
#> 4 setosa
#> 5 setosa
#> 6 setosa
#> 7 setosa
#> 8 setosa
#> 9 setosa
#> 10 setosa
#> 11 setosa
#> 12 setosa
#> 13 setosa
#> 14 setosa
#> 15 setosa
#> 16 setosa
#> 17 setosa
#> 18 setosa
#> 19 setosa
#> 20 setosa
#> 21 setosa
#> 22 setosa
#> 23 setosa
#> 24 setosa
#> 25 setosa
#> 26 setosa
#> 27 setosa
#> 28 setosa
#> 29 setosa
#> 30 setosa
#> 31 setosa
#> 32 setosa
#> 33 setosa
#> 34 setosa
#> 35 setosa
#> 36 setosa
#> 37 setosa
#> 38 setosa
#> 39 setosa
#> 40 setosa
#> 41 setosa
#> 42 setosa
#> 43 setosa
#> 44 setosa
#> 45 setosa
#> 46 setosa
#> 47 setosa
#> 48 setosa
#> 49 setosa
#> 50 setosa
#> 51 versicolor
#> 52 versicolor
#> 53 versicolor
#> 54 versicolor
#> 55 versicolor
#> 56 versicolor
#> 57 versicolor
#> 58 versicolor
#> 59 versicolor
#> 60 versicolor
#> 61 versicolor
#> 62 versicolor
#> 63 versicolor
#> 64 versicolor
#> 65 versicolor
#> 66 versicolor
#> 67 versicolor
#> 68 versicolor
#> 69 versicolor
#> 70 versicolor
#> 71 versicolor
#> 72 versicolor
#> 73 versicolor
#> 74 versicolor
#> 75 versicolor
#> 76 versicolor
#> 77 versicolor
#> 78 versicolor
#> 79 versicolor
#> 80 versicolor
#> 81 versicolor
#> 82 versicolor
#> 83 versicolor
#> 84 versicolor
#> 85 versicolor
#> 86 versicolor
#> 87 versicolor
#> 88 versicolor
#> 89 versicolor
#> 90 versicolor
#> 91 versicolor
#> 92 versicolor
#> 93 versicolor
#> 94 versicolor
#> 95 versicolor
#> 96 versicolor
#> 97 versicolor
#> 98 versicolor
#> 99 versicolor
#> 100 versicolor
#> 101 virginica
#> 102 virginica
#> 103 virginica
#> 104 virginica
#> 105 virginica
#> 106 virginica
#> 107 virginica
#> 108 virginica
#> 109 virginica
#> 110 virginica
#> 111 virginica
#> 112 virginica
#> 113 virginica
#> 114 virginica
#> 115 virginica
#> 116 virginica
#> 117 virginica
#> 118 virginica
#> 119 virginica
#> 120 virginica
#> 121 virginica
#> 122 virginica
#> 123 virginica
#> 124 virginica
#> 125 virginica
#> 126 virginica
#> 127 virginica
#> 128 virginica
#> 129 virginica
#> 130 virginica
#> 131 virginica
#> 132 virginica
#> 133 virginica
#> 134 virginica
#> 135 virginica
#> 136 virginica
#> 137 virginica
#> 138 virginica
#> 139 virginica
#> 140 virginica
#> 141 virginica
#> 142 virginica
#> 143 virginica
#> 144 virginica
#> 145 virginica
#> 146 virginica
#> 147 virginica
#> 148 virginica
#> 149 virginica
#> 150 virginica
#>