Skip to contents

A compilation of standard data sets that are often being used to showcase dimensionality reduction techniques.

Usage

loadDataSet(name = dataSetList(), n = 2000, sigma = 0.05)

dataSetList()

Arguments

name

A character vector that specifies the name of the data set.

n

In generated data sets the number of points to be generated, else ignored.

sigma

In generated data sets the standard deviation of the noise added, else ignored.

Value

loadDataSet an object of class

dimRedData. dataSetList() return a character string with the implemented data sets

Details

The argument name should be one of dataSetList(). Partial matching is possible, see match.arg. Generated data sets contain the internal coordinates of the manifold in the meta slot. Call dataSetList() to see what data sets are available.

Examples

## a list of available data sets:
dataSetList()
#>  [1] "Swiss Roll"           "Broken Swiss Roll"    "Helix"               
#>  [4] "Twin Peaks"           "Sphere"               "Ball"                
#>  [7] "FishBowl"             "3D S Curve"           "variable Noise Helix"
#> [10] "Iris"                 "Cube"                

## Load a data set:
swissRoll <- loadDataSet("Swiss Roll")
# \donttest{
if(requireNamespace("scatterplot3d", quietly = TRUE))
  plot(swissRoll, type = "3vars")

# }

## Load Iris data set, partial matching:
loadDataSet("I")
#> An object of class "dimRedData"
#> Slot "data":
#>        Sepal.Length Sepal.Width Petal.Length Petal.Width
#>   [1,]          5.1         3.5          1.4         0.2
#>   [2,]          4.9         3.0          1.4         0.2
#>   [3,]          4.7         3.2          1.3         0.2
#>   [4,]          4.6         3.1          1.5         0.2
#>   [5,]          5.0         3.6          1.4         0.2
#>   [6,]          5.4         3.9          1.7         0.4
#>   [7,]          4.6         3.4          1.4         0.3
#>   [8,]          5.0         3.4          1.5         0.2
#>   [9,]          4.4         2.9          1.4         0.2
#>  [10,]          4.9         3.1          1.5         0.1
#>  [11,]          5.4         3.7          1.5         0.2
#>  [12,]          4.8         3.4          1.6         0.2
#>  [13,]          4.8         3.0          1.4         0.1
#>  [14,]          4.3         3.0          1.1         0.1
#>  [15,]          5.8         4.0          1.2         0.2
#>  [16,]          5.7         4.4          1.5         0.4
#>  [17,]          5.4         3.9          1.3         0.4
#>  [18,]          5.1         3.5          1.4         0.3
#>  [19,]          5.7         3.8          1.7         0.3
#>  [20,]          5.1         3.8          1.5         0.3
#>  [21,]          5.4         3.4          1.7         0.2
#>  [22,]          5.1         3.7          1.5         0.4
#>  [23,]          4.6         3.6          1.0         0.2
#>  [24,]          5.1         3.3          1.7         0.5
#>  [25,]          4.8         3.4          1.9         0.2
#>  [26,]          5.0         3.0          1.6         0.2
#>  [27,]          5.0         3.4          1.6         0.4
#>  [28,]          5.2         3.5          1.5         0.2
#>  [29,]          5.2         3.4          1.4         0.2
#>  [30,]          4.7         3.2          1.6         0.2
#>  [31,]          4.8         3.1          1.6         0.2
#>  [32,]          5.4         3.4          1.5         0.4
#>  [33,]          5.2         4.1          1.5         0.1
#>  [34,]          5.5         4.2          1.4         0.2
#>  [35,]          4.9         3.1          1.5         0.2
#>  [36,]          5.0         3.2          1.2         0.2
#>  [37,]          5.5         3.5          1.3         0.2
#>  [38,]          4.9         3.6          1.4         0.1
#>  [39,]          4.4         3.0          1.3         0.2
#>  [40,]          5.1         3.4          1.5         0.2
#>  [41,]          5.0         3.5          1.3         0.3
#>  [42,]          4.5         2.3          1.3         0.3
#>  [43,]          4.4         3.2          1.3         0.2
#>  [44,]          5.0         3.5          1.6         0.6
#>  [45,]          5.1         3.8          1.9         0.4
#>  [46,]          4.8         3.0          1.4         0.3
#>  [47,]          5.1         3.8          1.6         0.2
#>  [48,]          4.6         3.2          1.4         0.2
#>  [49,]          5.3         3.7          1.5         0.2
#>  [50,]          5.0         3.3          1.4         0.2
#>  [51,]          7.0         3.2          4.7         1.4
#>  [52,]          6.4         3.2          4.5         1.5
#>  [53,]          6.9         3.1          4.9         1.5
#>  [54,]          5.5         2.3          4.0         1.3
#>  [55,]          6.5         2.8          4.6         1.5
#>  [56,]          5.7         2.8          4.5         1.3
#>  [57,]          6.3         3.3          4.7         1.6
#>  [58,]          4.9         2.4          3.3         1.0
#>  [59,]          6.6         2.9          4.6         1.3
#>  [60,]          5.2         2.7          3.9         1.4
#>  [61,]          5.0         2.0          3.5         1.0
#>  [62,]          5.9         3.0          4.2         1.5
#>  [63,]          6.0         2.2          4.0         1.0
#>  [64,]          6.1         2.9          4.7         1.4
#>  [65,]          5.6         2.9          3.6         1.3
#>  [66,]          6.7         3.1          4.4         1.4
#>  [67,]          5.6         3.0          4.5         1.5
#>  [68,]          5.8         2.7          4.1         1.0
#>  [69,]          6.2         2.2          4.5         1.5
#>  [70,]          5.6         2.5          3.9         1.1
#>  [71,]          5.9         3.2          4.8         1.8
#>  [72,]          6.1         2.8          4.0         1.3
#>  [73,]          6.3         2.5          4.9         1.5
#>  [74,]          6.1         2.8          4.7         1.2
#>  [75,]          6.4         2.9          4.3         1.3
#>  [76,]          6.6         3.0          4.4         1.4
#>  [77,]          6.8         2.8          4.8         1.4
#>  [78,]          6.7         3.0          5.0         1.7
#>  [79,]          6.0         2.9          4.5         1.5
#>  [80,]          5.7         2.6          3.5         1.0
#>  [81,]          5.5         2.4          3.8         1.1
#>  [82,]          5.5         2.4          3.7         1.0
#>  [83,]          5.8         2.7          3.9         1.2
#>  [84,]          6.0         2.7          5.1         1.6
#>  [85,]          5.4         3.0          4.5         1.5
#>  [86,]          6.0         3.4          4.5         1.6
#>  [87,]          6.7         3.1          4.7         1.5
#>  [88,]          6.3         2.3          4.4         1.3
#>  [89,]          5.6         3.0          4.1         1.3
#>  [90,]          5.5         2.5          4.0         1.3
#>  [91,]          5.5         2.6          4.4         1.2
#>  [92,]          6.1         3.0          4.6         1.4
#>  [93,]          5.8         2.6          4.0         1.2
#>  [94,]          5.0         2.3          3.3         1.0
#>  [95,]          5.6         2.7          4.2         1.3
#>  [96,]          5.7         3.0          4.2         1.2
#>  [97,]          5.7         2.9          4.2         1.3
#>  [98,]          6.2         2.9          4.3         1.3
#>  [99,]          5.1         2.5          3.0         1.1
#> [100,]          5.7         2.8          4.1         1.3
#> [101,]          6.3         3.3          6.0         2.5
#> [102,]          5.8         2.7          5.1         1.9
#> [103,]          7.1         3.0          5.9         2.1
#> [104,]          6.3         2.9          5.6         1.8
#> [105,]          6.5         3.0          5.8         2.2
#> [106,]          7.6         3.0          6.6         2.1
#> [107,]          4.9         2.5          4.5         1.7
#> [108,]          7.3         2.9          6.3         1.8
#> [109,]          6.7         2.5          5.8         1.8
#> [110,]          7.2         3.6          6.1         2.5
#> [111,]          6.5         3.2          5.1         2.0
#> [112,]          6.4         2.7          5.3         1.9
#> [113,]          6.8         3.0          5.5         2.1
#> [114,]          5.7         2.5          5.0         2.0
#> [115,]          5.8         2.8          5.1         2.4
#> [116,]          6.4         3.2          5.3         2.3
#> [117,]          6.5         3.0          5.5         1.8
#> [118,]          7.7         3.8          6.7         2.2
#> [119,]          7.7         2.6          6.9         2.3
#> [120,]          6.0         2.2          5.0         1.5
#> [121,]          6.9         3.2          5.7         2.3
#> [122,]          5.6         2.8          4.9         2.0
#> [123,]          7.7         2.8          6.7         2.0
#> [124,]          6.3         2.7          4.9         1.8
#> [125,]          6.7         3.3          5.7         2.1
#> [126,]          7.2         3.2          6.0         1.8
#> [127,]          6.2         2.8          4.8         1.8
#> [128,]          6.1         3.0          4.9         1.8
#> [129,]          6.4         2.8          5.6         2.1
#> [130,]          7.2         3.0          5.8         1.6
#> [131,]          7.4         2.8          6.1         1.9
#> [132,]          7.9         3.8          6.4         2.0
#> [133,]          6.4         2.8          5.6         2.2
#> [134,]          6.3         2.8          5.1         1.5
#> [135,]          6.1         2.6          5.6         1.4
#> [136,]          7.7         3.0          6.1         2.3
#> [137,]          6.3         3.4          5.6         2.4
#> [138,]          6.4         3.1          5.5         1.8
#> [139,]          6.0         3.0          4.8         1.8
#> [140,]          6.9         3.1          5.4         2.1
#> [141,]          6.7         3.1          5.6         2.4
#> [142,]          6.9         3.1          5.1         2.3
#> [143,]          5.8         2.7          5.1         1.9
#> [144,]          6.8         3.2          5.9         2.3
#> [145,]          6.7         3.3          5.7         2.5
#> [146,]          6.7         3.0          5.2         2.3
#> [147,]          6.3         2.5          5.0         1.9
#> [148,]          6.5         3.0          5.2         2.0
#> [149,]          6.2         3.4          5.4         2.3
#> [150,]          5.9         3.0          5.1         1.8
#> 
#> Slot "meta":
#>        Species
#> 1       setosa
#> 2       setosa
#> 3       setosa
#> 4       setosa
#> 5       setosa
#> 6       setosa
#> 7       setosa
#> 8       setosa
#> 9       setosa
#> 10      setosa
#> 11      setosa
#> 12      setosa
#> 13      setosa
#> 14      setosa
#> 15      setosa
#> 16      setosa
#> 17      setosa
#> 18      setosa
#> 19      setosa
#> 20      setosa
#> 21      setosa
#> 22      setosa
#> 23      setosa
#> 24      setosa
#> 25      setosa
#> 26      setosa
#> 27      setosa
#> 28      setosa
#> 29      setosa
#> 30      setosa
#> 31      setosa
#> 32      setosa
#> 33      setosa
#> 34      setosa
#> 35      setosa
#> 36      setosa
#> 37      setosa
#> 38      setosa
#> 39      setosa
#> 40      setosa
#> 41      setosa
#> 42      setosa
#> 43      setosa
#> 44      setosa
#> 45      setosa
#> 46      setosa
#> 47      setosa
#> 48      setosa
#> 49      setosa
#> 50      setosa
#> 51  versicolor
#> 52  versicolor
#> 53  versicolor
#> 54  versicolor
#> 55  versicolor
#> 56  versicolor
#> 57  versicolor
#> 58  versicolor
#> 59  versicolor
#> 60  versicolor
#> 61  versicolor
#> 62  versicolor
#> 63  versicolor
#> 64  versicolor
#> 65  versicolor
#> 66  versicolor
#> 67  versicolor
#> 68  versicolor
#> 69  versicolor
#> 70  versicolor
#> 71  versicolor
#> 72  versicolor
#> 73  versicolor
#> 74  versicolor
#> 75  versicolor
#> 76  versicolor
#> 77  versicolor
#> 78  versicolor
#> 79  versicolor
#> 80  versicolor
#> 81  versicolor
#> 82  versicolor
#> 83  versicolor
#> 84  versicolor
#> 85  versicolor
#> 86  versicolor
#> 87  versicolor
#> 88  versicolor
#> 89  versicolor
#> 90  versicolor
#> 91  versicolor
#> 92  versicolor
#> 93  versicolor
#> 94  versicolor
#> 95  versicolor
#> 96  versicolor
#> 97  versicolor
#> 98  versicolor
#> 99  versicolor
#> 100 versicolor
#> 101  virginica
#> 102  virginica
#> 103  virginica
#> 104  virginica
#> 105  virginica
#> 106  virginica
#> 107  virginica
#> 108  virginica
#> 109  virginica
#> 110  virginica
#> 111  virginica
#> 112  virginica
#> 113  virginica
#> 114  virginica
#> 115  virginica
#> 116  virginica
#> 117  virginica
#> 118  virginica
#> 119  virginica
#> 120  virginica
#> 121  virginica
#> 122  virginica
#> 123  virginica
#> 124  virginica
#> 125  virginica
#> 126  virginica
#> 127  virginica
#> 128  virginica
#> 129  virginica
#> 130  virginica
#> 131  virginica
#> 132  virginica
#> 133  virginica
#> 134  virginica
#> 135  virginica
#> 136  virginica
#> 137  virginica
#> 138  virginica
#> 139  virginica
#> 140  virginica
#> 141  virginica
#> 142  virginica
#> 143  virginica
#> 144  virginica
#> 145  virginica
#> 146  virginica
#> 147  virginica
#> 148  virginica
#> 149  virginica
#> 150  virginica
#>